UNIVERSIDAD DE GUANAJUATO											
NOMBRE DE LA ENTIDAD:		CAMPUS LEÓN; DIVISIÓN DE CIENCIAS E INGENIERÍAS									
NOMBRE DEL PROGRAMA EDUCATIVO	Licenciatura en li	Licenciatura en Ingeniería Química									
NOMBRE DE LA MATERIA:	Laboratorio de Re	acto	ores			CLAVE:			GILR-06		
FECHA DE ELABORACIÓN:	02 de Junio de 20°	11									
FECHA DE ACTUALIZACIÓN:						HORA	S/SE	EMANA/SEMESTF	RE		
ELABORÓ:	José Antonio Reye	s Ag	guilera								
PRERREQUISITOS:					TEORÍA:		0				
CURSADA Y APROBADA:	Ninguna	Ninguna				PRÁCTICA:		4			
CURSADA:	Ninguna				CREDITOS:		4				
	(CAR	ACTERIZACIÓN DE	LA N	NATERIA						
POR EL TIPO DE CONOCIMIENTO:	DISCIPLINARIA	Х	FORMATIVA		METODOLÓGIGA	4					
POR LA DIMENSIÓN DEL CONOCIMIENTO:	ÁREA BASICA		ÁREA GENERAL	Х	ÁREA PROFESIO	NAL					
POR LA MODALIDAD DE ABORDAR EL	CURSO		TALLER		LABORATORIO		Χ				
CONOCIMIENTO											
POR EL CARÁCTER DE LA MATERIA:	OBLIGATORIA X RECURSABLE OPTATIVA						SELECTIVA		SEMINARIO		
ES PARTE DE UN TRONCO COMÚN O MATERIAS COMUNES	SI		NO	Х							

- COMPETENCIA(S) GENERAL(ES) DE LA MATERIA:
- 1.- Conocer, clasificar y analizar los distintos tipos de reactores químicos y su empleo en procesos de transformación de la materia.
- 2.- Analizar el funcionamiento de los reactores y aplicar en consecuencia los balances de materia y energía a cada tipo de reactor.
- 3.- Analizar la cinética de sistemas reaccionantes y su efecto en los coeficientes de transferencia de masa.
- 4.- Determinar el grado de conversión de un sistema de un sistema reaccionante en varios tipos de reactores a partir de la medición, observación y manipulación de variables experimentales.
- 5.- Determinar el equilibrio químico de una reacción mediante la manipulación de variables experimentales y la observación.
- 6.- Determinar las ecuaciones de diseño para varios tipos de reactores.
- 7.- Evaluar parámetros de comportamiento dinámico para sistemas reaccionantes en reactores químicos.

CONTRIBUCIÓN DE LA MATERIA AL LOGRO DEL PERFIL POR COMPETENCIAS:

- 1.- Demostrar una comprensión profunda de los conceptos y principios fundamentales de física y química.
- 2.- Buscar, interpretar y utilizar información bibliográfica, en inglés y español.
- 4.- Analizar sistemas utilizando balances de materia y energía.
- 5.- Simular e integrar procesos y operaciones industriales.
- 6.- Especificar equipos e instalaciones para manejo de distintos reactivos, intermediarios y productos.
- 11.- Aplicar herramientas de planificación y optimización.
- 12.- Realizar investigación aplicada (innovación de tecnología y uso de tecnologías emergentes).
- 14.- Plantear, analizar y resolver problemas físicos, químicos y fisicoquímicos, tanto teóricos como experimentales, mediante la utilización de métodos analíticos, experimentales o numéricos.
- 20.- Capacidad de aplicar conocimientos de química, física y matemáticas a la operación de procesos químicos en el área tecnológica de reactores.
- 22.- Dominio de técnicas y herramientas modernas necesarias para el ejercicio de su profesión, mostrando capacidad de analizar y entender las relaciones entre la tecnología y las organizaciones.

- 23.- Capacidad de reconocer e incorporar las demandas del contexto en la concepción, diseño, implementación, operación y control de sistemas, equipos y procesos químicos; mediante la dirección y proyección de las instalaciones y equipo de la rama industrial química en la que se desempeñe (orgánica, de síntesis, farmacéutica, curtido, polímeros, etc).
- 24.- Especialmente capacitados para actuar, realizar y dirigir toda clase de estudios, trabajos y organismos en la esfera económico industrial, química, estadística, social y laboral.

PRESENTACIÓN DE LA MATERIA

El laboratorio de Reactores implica la aplicación de los conceptos teóricos impartidos en la asignatura de Ingeniería de Reactores Homogéneos, de esta manera el alumno consolida dichos conceptos y adquiere la habilidad de arrancar, operar y realizar paros de reactores químicos y equipos auxiliares de maneja segura.

La asignatura es completamente experimental pero, involucra actividades de investigación bibliográfica y metodológica para aplicar conocimientos teóricos relacionados con la transferencia de masa y energía, analizar sistemas reaccionantes en equilibrio; para ello él estudiante debe manipular parámetros experimentales medibles (temperatura, presión, viscosidad, densidad, etc) con el objetivo de determinar coeficientes de transferencia, grados de conversión, condiciones de estado estacionario, tiempos de residencia dentro del reactor; todos éstos datos experimentales requeridos para llevar a cabo el diseño de reactores.

Las actividades a realizan están organizadas de tal forma que el alumno se familiarice e identifique la o las reacciones que se llevan a cabo en un proceso. Los efectos de la presencia de un catalizador para llevar a cabo la reacción y la secuencia seguida en la reacción química dentro del proceso de transformación de reactivos a productos. Se abordan dos tipos de reactores (continuo de tanque de agitación y de reactor tubular) para reafirmar el análisis de deducción de las ecuaciones que representan el proceso de transformación dentro del reactor y también para corroborar en qué tipo de sistemas es conveniente usar uno u otro tipo de reactor.

Se aborda el empleo de catalizadores para sistemas heterogéneos, la determinación del tiempo de residencia (a partir de datos de grado de conversión logrados) y, finalmente se introduce al alumnos en la dinámica de control de procesos de tal forma que el alumno adquiera habilidades para determinar que parámetros debe medir, que tipo de sensor debe emplear, donde deben ubicarse, como debe procesarse la información adquirida de los parámetros medidos y la secuencia lógica a seguir para realizar correcciones. Todo lo anterior con el objetivo de que el reactor opere de forma segura en todo momento y cumpla con los requisitos de transformación requeridos por o para el proceso global.

RELACIÓN CON OTRAS MATERIAS DEL PLAN DE ESTUDIOS

El contenido de esta materia con lleva cálculos que implican conceptos de estequiometría y de equilibrio químico adquiridos en los cursos de: Química general, Química Inorgánica descriptiva, Estequiometria y Equilibrio Químico, Balance de Materia y Energía, Cinética Química, Termodinámica Química, Dinámica de fluidos, Transporte de masa, Transferencia de Calor e Ingeniería de Reactores Homogéneos.

Es importante que el alumno haya cursado, o esté cursando por lo menos, la asignatura de Ingeniería de Reactores Homogéneos para tomar este curso.

NOMBRE DE LA UNIDAD I Sistemas reaccionantes y reactores industriales.			TIMADO PARA DESARROLLAR	LA UNIDAD 6 ho	ras
COMPETENCIAS A			EVIDENCIAS [DE DESEMPEÑO	
DESARROLLAR	CONOCIMIENTOS	HABILIDADES	ACTITUDES	DIRECTA	POR PRODUCTO
1 Complementar conceptos	Reacción química y	Identificar y clasificar el tipo de	Trabajar en equipo;	Participación	Reporte de
teóricos de equilibrio	tipos de reacciones.	reactor en base a su	Apertura al diálogo y	en laboratorio.	laboratorio
químico mediante		funcionamiento y correlacionarlo	negociación para		individual y por
actividades experimentales.	Equilibrio químico.	con el tipo de sistemas al que	designar tareas,	Desempeño en	equipo.
		puede aplicarse.	funciones y cargas de	laboratorio.	
	Tipos de reactores		trabajo de manera		
2 Conocer, identificar y	(CSTR y PFR).	Identificar cuando un sistema	individual y en equipo;		
manejar reactores químicos.		reaccionante se encuentra en	Autocrítica; Tolerancia;		
	Balances de masa y		Desarrollo de estrategias		
	energía.	observación analítica y la	para la solución de		
3 Conocer, comprender el		manipulación de parámetros	problemas; Compromiso		
funcionamiento y manipular	Manejo de bombas,		por mantener		
equipos y accesorios	válvulas, tuberías y		actualizada la formación		
necesarios en la operación	accesorios para		científica;		
de reactores químicos.	medición de flujo.	de desfogue de masa del reactor	Fortalecimiento de		
		mediante accionamiento de	correctos hábitos de		
		bombas y válvulas.	estudio y trabajo.		

NOMBRE DE LA UNIDAD	II Secuencia de operación de un		STIMADO PARA DESARROLLAR LA	A UNIDAD 6 h	oras
TEMÁTICA/BLOQUE TEMÁTICO:	proceso.	TEMÁTICA			
COMPETENCIAS A DESARROLLAR		SABERES		EVIDENCIA:	S DE DESEMPEÑO
	CONOCIMIENTOS	HABILIDADES	ACTITUDES	DIRECTA	POR PRODUCTO
1 Conocer la metodología	Arranque de un reactor CSTR y	Determinar y	Trabajar en equipo;	Participación	Reporte de
seguida para arrancar y operar	FPR.	seguir la	Apertura al diálogo y	en	laboratorio
diversos tipos de reactores.		secuencia de	negociación para designar	laboratorio.	individual y por
	Operación de un reactor CSTR y	pasos para	tareas, funciones y cargas		equipo.
2 Comprender la causa-efecto de	FPR.	arrancar,	de trabajo de manera	Desempeño	
flujos de masa y energía y		acondicionar,	individual y en equipo;	en	
correlacionarla a resistencias y	Paro de un reactor CSTR y FPR.	operar y parar	Autocrítica; Tolerancia;	laboratorio.	
características de equipo		un reactor	Desarrollo de estrategias		
usando en la ingeniería	Manejo de bombas, válvulas,	químico,	para la solución de		
química.	tuberías y accesorios para	atendiendo	problemas; Compromiso por		
	medición de flujo, temperatura	requerimientos	mantener actualizada la		
3Conocer y seguir reglas de	y presión.	de proceso y	formación científica;		
seguridad en el arranque,	Manejo de equipo de	obedeciendo	Fortalecimiento de		
operación y paro de reactores	intercambio de calor.	normas y reglas	correctos hábitos de estudio		
químicos y equipos auxiliares.		de seguridad.	y trabajo.		

NOMBRE DE LA UNIDAD TEMÁTICA/BLOQUE TEMÁTICO:	TEMÁTICA			STIMADO PARA DESARROLLAR	LA UNIDAD 6 I	6 horas		
COMPETENCIAS A		SABERES			EVIDENCIA	CIAS DE DESEMPEÑO		
DESARROLLAR	CONOCIMIENTOS	HABILIDADES		ACTITUDES	DIRECTA	POR PRODUCTO		
1 Operar reactores	Cinética química.	Comprender y aplica	ar los	Trabajar en equipo;	Participación	Reporte de		
continuos de mezcla		conceptos de fenómei		Apertura al diálogo y	en	laboratorio		
perfecta.	Velocidad de reacción.	trasporte de masa y en	nergía a	negociación para designar	laboratorio.	individual y por		
		un CSTR.		tareas, funciones y cargas		equipo.		
2 Aplicar balances de	Orden de reacción.			de trabajo de manera	Desempeño			
materia en función de		Determinar el grad	lo de	individual y en equipo;	en			
concentración de	Reactor continuo de	conversión de un	sistema	Autocrítica; Tolerancia;	laboratorio.			
reactivos a reactores	mezcla perfecta (CSTR)	reaccionante.		Desarrollo de estrategias				
químicos empleados en				para la solución de				
ingeniería química.	Balance molar, balance	Determinar la ecuaci	ión de	problemas; Compromiso				
	másico.	diseño de un CSTR.		por mantener actualizada				
3 Aplicar conocimiento	_			la formación científica;				
teóricos de balance de	Balance de energía.		año de	Fortalecimiento de				
masa al diseño de		reactor para el gra	do de	correctos hábitos de				
reactores químicos de	Conversión.	conversión de interés.		estudio y trabajo.				
flujo continuo.								

NOMBRE DE LA UNIDAD IV Reactores continuos de mezcla perfecta		nuos de mezcla perfecta TIEMPO	TIEMPO ESTIMADO PARA DESARROLLAR LA UNIDAD 6 horas			
TEMÁTICA/BLOQUE TEMÁTICO:	conectados en serie.	TEMÁT	ΓΙCΑ			
COMPETENCIAS A		SABERES			EVIDENCIAS DE DESEMPEÑO	
DESARROLLAR	CONOCIMIENTOS	HABILIDADES		ACTITUDES	DIRECTA	POR PRODUCTO
1 Operar sistema de	Cinética química.	Comprender y aplicar los concep	ptos de	Trabajar en equipo;	Participación	Reporte de
reactores continuos de		fenómenos de trasporte de n		Apertura al diálogo y	en	laboratorio
mezcla perfecta.	Velocidad de	energía a un sistema de CSTR en	n serie.	negociación para	laboratorio.	individual y por
	reacción, orden de			designar tareas,		equipo.
2 Aplicar balances de materia	reacción.	Cuantificar el grado de convers	ión del	funciones y cargas de	Desempeño	
en función de concentración		sistema reaccionante para el conjunto		trabajo de manera	en	
de reactivos a sistemas de	Reactor continuo	de CSTR en serie.		individual y en equipo; laboratorio		
reactores químicos en serie	de mezcla			Autocrítica; Tolerancia;		
empleados en ingeniería	perfecta (CSTR)	Determinar la ecuación de diseñ	•	Desarrollo de		
química.		el conjunto de CSTR y determ		estrategias para la		
	Balance molar,	tamaño de requerido para		solución de problemas;		
3 Realizar tablas	balance másico.	reactor para el grado de convers	sión de	Compromiso por		
comparativas conversión de		interés.		mantener actualizada		
reacción, flujo de	Balance de	_		la formación científica;		
materiales y economía de	energía.	Comparar conversión y cost		Fortalecimiento de		
proceso para sistema en	_ ,	reactor para CSTR simple y CS	STR en	correctos hábitos de		
serie y para reactor simple.	Conversión.	serie.		estudio y trabajo.		

NOMBRE DE LA UNIDAD	V Reactor tubular			TIMADO PARA DESARROLLAI	R LA UNIDAD 6	horas	
TEMÁTICA/BLOQUE TEMÁTICO:			TEMÁTICA				
COMPETENCIAS A		SABERES			EVIDENCIAS	CIAS DE DESEMPEÑO	
DESARROLLAR	CONOCIMIENTOS	HABILIDADES		ACTITUDES	DIRECTA	POR PRODUCTO	
1 Operar sistema de	Cinética química.	Comprender y aplicar los o		Trabajar en equipo;	Participación	Reporte de	
reactores continuos de flujo		de fenómenos de tras _l	porte de	Apertura al diálogo y	en laboratorio.	laboratorio	
tubular.	Velocidad de	masa y energía a un sisten	na de FPR	negociación para		individual y por	
	reacción, orden de	simple y en serie.		designar tareas,	Desempeño en	equipo.	
2 Aplicar balances de materia	reacción.			funciones y cargas de	laboratorio.		
en función de concentración		Cuantificar el grado de conversión		trabajo de manera			
de reactivos a sistemas de	Reactor continuo	del sistema reaccionante para		individual y en equipo;			
reactores de flujo tubular	tubular (FPR)	FPR simple y en serie.		Autocrítica; Tolerancia;			
en serie empleados en				Desarrollo de			
ingeniería química.	Balance molar,	Determinar la ecuación d		estrategias para la			
	balance másico.	para el FPR y FPR e		solución de problemas;			
3 Realizar tablas		determinar el tamaño de		Compromiso por			
comparativas conversión de	Balance de	para cada reactor para el	grado de	mantener actualizada			
reacción, flujo de	energía.	conversión de interés.		la formación científica;			
materiales y economía de	_	_		Fortalecimiento de			
proceso para sistema en	Conversión.	Comparar conversión y o		correctos hábitos de			
serie y para reactor simple.		reactor para CSTR simple	e y CSTR	estudio y trabajo.			
		en serie.					

NOMBRE DE LA UNIDAD	VI Efecto del cataliza			ESTIMADO PARA DESARROLLAR	R LA UNIDAD 6 I	6 horas	
TEMÁTICA/BLOQUE	reacción.		TEMÁTIC	CA			
TEMÁTICO:							
COMPETENCIAS A		SABERES			EVIDENCIAS	DE DESEMPEÑO	
DESARROLLAR	CONOCIMIENTOS	HABILIDADES		ACTITUDES	DIRECTA	POR PRODUCTO	
1Complementar concepto	Catálisis.	Cuantificar el grado	o de	Trabajar en equipo;	Participación	Reporte de	
de catálisis y aplicar a		conversión del s	istema	Apertura al diálogo y	en laboratorio.	laboratorio	
sistemas de reacción en	Catalizador y tipos	reaccionante para el FPR (cuando	negociación para designar		individual y por	
reactores químicos.	de catalizadores.	se emplea un catalizador.		tareas, funciones y cargas	Desempeño en	equipo.	
				de trabajo de manera	laboratorio.		
2 Conocer, identificar y	Efecto del	Determinar la influenci	ia del	individual y en equipo;			
manejar físicamente	catalizador en la	catalizador en la ecuaci	ión de	Autocrítica; Tolerancia;			
catalizadores en	velocidad de	velocidad y determina	ar la	Desarrollo de estrategias			
reactores químicos.	reacción.	ecuación de diseño para e	el FPR,	para la solución de			
		calcular el tamaño de rec	querido	problemas; Compromiso			
3Conocer procedimientos	Balance molar,	para cada reactor para el	l grado	por mantener actualizada			
de operación para	balance másico.	de conversión de interés.		la formación científica;			
cargar, inmovilizar y				Fortalecimiento de			

recuperar catalizador de	Balance de energía.	Comparar conversión y costos de	correctos hábitos de
flujos de salida de		reactor FPR con y sin	estudio y trabajo.
reactores.	Conversión.	catalizador.	

NOMBRE DE LA UNIDAD TEMÁTICA/BLOQUE TEMÁTICO:	VII Catálisis heterogér tubular.	nea en un reactor TIEMPO ES' TEMÁTICA	ESTIMADO PARA DESARROLLAR LA UNIDAD 6 horas A			
COMPETENCIAS A		SABERES		EVIDENCIAS D	DE DESEMPEÑO	
DESARROLLAR	CONOCIMIENTOS	HABILIDADES	ACTITUDES	DIRECTA	POR PRODUCTO	
1 Complementar concepto de catálisis y aplicar a	_	Comprender y aplicar los conceptos de fenómenos de difusión y su	Apertura al diálogo y	Participación en laboratorio.	Reporte de laboratorio	
sistemas de reacción en reactores químicos.	Catalizador y tipos de catalizadores.	influencia en el trasporte de masa para sistemas con reacción química heterogénea.		Desempeño en laboratorio.	individual y por equipo.	
2 Conocer, identificar y manejar físicamente catalizadores en reactores químicos.		Cuantificar el grado de conversión del sistema reaccionante con catálisis heterogénea en un FPR.	individual y en equipo; Autocrítica; Tolerancia; Desarrollo de estrategias para la solución de problemas; Compromiso			
3 Comprender causa y efecto de la naturaleza y características reológicas del catalizador en el grado de conversión de	transferencia de masa, resistencia a la	Determinar experimentalmente coeficientes de transferencia de masa. Comprender la causa-efecto del	por mantener actualizada la formación científica; Fortalecimiento de correctos hábitos de estudio y trabajo.			
una reacción lograda por el reactor químico.	Conversión	tamaño de partícula de catalizador y sus propiedades reológicas en el grado de conversión.	estudio y tiubujo.			

NOMBRE DE LA UNIDAD	VIII Control de un reac	tor químico. TIEMPO E	STIMADO PARA DESARROLLAR LA	as	
TEMÁTICA/BLOQUE TEMÁTICO:		UNIDAD 7	ΓΕΜÁΤΙCA		
COMPETENCIAS A DESARROLLAR		SABERES		EVIDENCIAS	DE DESEMPEÑO
	CONOCIMIENTOS	HABILIDADES	ACTITUDES	DIRECTA	POR PRODUCTO
1 Aplicar los fundamentos teóricos	Sensores de	Comprender el	Trabajar en equipo;	Participación	Reporte de
de teoría de control a la	temperatura, presión,	funcionamiento de	Apertura al diálogo y	en	laboratorio
operación de un reactor químico.	densidad, viscosidad,	sensores, dispositivos de	negociación para designar	laboratorio.	individual y por
	etc.	recepción y análisis de	tareas, funciones y cargas		equipo.
2 Conocer, comprender el		datos y, equipos de	de trabajo de manera	Desempeño	
funcionamiento y emplear	Dispositivos analógicos	control electrónicos de	individual y en equipo;	en	
sensores y dispositivos para	y electrónicos para	proceso.	Autocrítica; Tolerancia;	laboratorio.	
medir parámetros	procesamiento de		Desarrollo de estrategias		
experimentales.	datos y señales.	Monitorear, operar y	para la solución de		
		controlar un reactor	problemas; Compromiso por		

3Conocer la causa y efecto de la variación de cada uno de los parámetros experimentales medidos sobre el comportamiento global der reactor.	Teoría de control.	•	formación científica; Fortalecimiento de correctos	
4 Conocer, comprender y manejar los equipos de control y aplicarlos a la manipulación de bombas, válvulas y equipos auxiliares para mantener o recuperar las condiciones de operación segura de reactores químicos.				

NOMBRE DE LA UNIDAD	IX Tiempos de resid	dencia. 1	TEMPO ESTIMADO PARA DESARROLLA	R LA UNIDAD 6	horas
TEMÁTICA/BLOQUE		Τ	EMÁTICA		
TEMÁTICO:					
COMPETENCIAS A		SABERES			S DE DESEMPEÑO
DESARROLLAR	CONOCIMIENTOS	HABILIDADES	ACTITUDES	DIRECTA	POR PRODUCTO
1 Comprender y emplear	Distribución de	Aplicar, explicar la función		Participación	Reporte de
concepto de distribución	tiempos de	de distribución	, , , , ,	en laboratorio.	laboratorio
de tiempos de residencia	residencia.	acumulativa, de edad	, ,		individual y por
en reactores químicos para		externa y de tiempo de		Desempeño en	equipo.
implementar	Tiempo medio de	residencia.	individual y en equipo;	laboratorio.	
procedimientos	residencia.		Autocrítica; Tolerancia;		
experimentales para	,	Aplicar la función de			
determinar la función de	Función de	distribución acumulativa	-		
distribución acumulativa y	distribución	el tiempo de residencia	·		
el tiempo de residencia	acumulativa.	para calcular la conversión			
promedio.	Tiampa da	y la concentración de	*		
2Realizar balances de	Tiempo de residencia	analitos a la salida de			
materia para empleando el	residencia	reactor químico.	trabajo.		
tiempo de residencia para					
dimensionar reactores.					
differisional reactores.					
3 Determinar la ecuación de					
diseño y el tiempo de					
residencia para diversos					
tipos de reactores.					

ACTIVIDADES DE APRENDIZAJE (Sugeridas)

- Elaborar bitácora individual que permita al alumno retro-alimentarse.
- Actividades adicionales asignadas a los alumnos que complementen los temas trabajados en laboratorio.
- Realizar visitas a industrias en cuyos procesos estén incluidos reactores homogéneos y heterogéneos (se puede aplicar lo correspondiente a dos sesiones de laboratorio).

RECURSOS Y MATERIALES DIDÁCTICOS (Sugeridos)

Cañón, computadora portátil, paquetería con software para resolución y simulación de sistemas reaccionantes (Polymath, Comsol, Matlab).

SISTEMA DE EVALUACIÓN

EVALUACIÓN (Sugerida pero podrá modificarse o cambiarse por profesor que imparta asignatura):

- Se requiere que alumno tenga un mínimo de 90% de asistencia.
- Se propone que alumno presente dos reportes adicionales (por equipo) donde documente características técnicas y de operación de reactores químicos comunes que complementen los temas trabajados en laboratorio. Los procesos a abordar serán pactados previamente con el profesor y pueden incluir tipos de reactores analizados en visita a industria.
- Se entregará un reporte por equipo y por actividad realizada en laboratorio.
- Cada alumno entregará un escrito donde enliste y discuta los posibles inconvenientes de los protocolos experimentales y proponga mejoras a los mismos.
- Se calificará el desempeño del alumno dentro del laboratorio, para ello se ponderará: asistencia, conocimiento de los equipos y herramientas y habilidad para manejarlos, conocimiento y comprensión de las actividades a realizar en la sesión, actitud de trabajo individual y en equipo.

Para determinar la calificación final se sugiere emplear la ponderación siguiente:

Reportes de laboratorio (equipo):

Escrito individual de análisis y crítica de protocolo experimental:

Desempeño en laboratorio:

Reportes adicionales asignados (equipo)

Total:

35%

20%

100%

FUENTES DE INFORMACIÓN	
BIBLIOGRAFÍA BÁSICA:	BIBLIOGRAFÍA COMPLEMENTARIA:
 Manual del Ingeniero Químico; Robert H. Perry, Don W. Green, James Maloney; Séptima edición; Editorial McGraw-Hill, (2010). 	 Computational Flow Modeling for Chemical Reactor Engineering; Ranade V. Vivek; Academic Press; Firts Edition,; USA (2001).
2Lange's Handbook of Chemistry and Physics; McGraw-Hill; New York (ediciones periódicas).	2 Reactor Design for Chemical Engineers; J M Winterbottom, M B King; First Edition; Stanley Thornes Publishers; (1999).
3Elementos de ingeniería de las reacciones químicas; H. Scott Fogler; Cuarta edición; Pearson Prentice Hall; México (2008).	 Introduction to Chemical Reaction; Ronald W Missen, Charles A Mims, Bradley A Seville; First Edition; New York (1999).
4Ingeniería de la cinética química; Smith J. M.; Primera edición; Editorial CECSA; México (1986).	 Chemical reactor analysis and design; Froment G. F., Bischoff K. B.; 2nd Edition; John Wiley & Sons; New York (1990).

- 5.-Chemical Reaction Engineering; Octave Levenspiel; Third Edition; John Wiley & Sons, New York; USA (1999).
- 6.-Chemical and Catalytic Reaction Engineering; James J. Carberry; First Edition; Mc Graw-Hill (Chemical Engineering Series); USA (1976).

OTRAS FUENTES DE INFORMACIÓN:

www.nist.com
Journal of Chemical and Engineering Data
AlChE Journal
Chemical Engineering Communications